Thwarting Passive Privacy Attacks in Collaborative Filtering
نویسندگان
چکیده
While recommender systems based on collaborative filtering have become an essential tool to help users access items of interest, it has been indicated that collaborative filtering enables an adversary to perform passive privacy attacks, a type of the most damaging and easy-to-perform privacy attacks. In a passive privacy attack, the dynamic nature of a recommender system allows an adversary with a moderate amount of background knowledge to infer a user’s transaction through temporal changes in the public related-item lists (RILs). Unlike the traditional solutions that manipulate the underlying user-item rating matrix, in this paper, we respond to passive privacy attacks by directly anonymizing the RILs, which are the real outputs rendered to an adversary. This fundamental switch allows us to provide a novel rigorous inference-proof privacy guarantee, known as δ-bound, with desirable data utility and scalability. We propose anonymization algorithms based on suppression and a novel mechanism, permutation, tailored to our problem. Experiments on real-life data demonstrate that our solutions are both effective and efficient.
منابع مشابه
Shilling Attacks against Privacy-Preserving Collaborative Filtering
Although collaborative filtering with privacy schemes protect individual user privacy while still providing accurate recommendations, they might be subject to shilling attacks like traditional schemes without privacy. There are various studies focusing on either proposing privacypreserving collaborative filtering schemes or developing robust recommendation algorithms against shilling attacks. H...
متن کاملCollaborative Filtering for Community Threats
We discuss the threats posed by attacks on computer infrastructure, and particularly attacks from distributed, stealthy sources. We propose that these attacks would best be detected by distributed networks of sensors, and that these distributed networks must protect the privacy, confidentiality and anonymity of their members. We briefly outline a network attack detection technique we are workin...
متن کاملA Privacy Review of Vertically Partitioned Data- based Privacy-Preserving Collaborative Filtering Schemes
E-commerce companies utilize collaborative filtering approaches to provide recommendations in order to attract customers. Consumer participation through supplying feedbacks is an important component for a recommendation system to produce accurate predictions. New companies in the marketplace might lack enough data for collaborative filtering purposes. Thus, they can come together to share their...
متن کاملSecurity in Collaborative Filtering Systems
In this paper, we provide a detailed discussion of security in collaborative ltering systems, shared services that provide personalized recommendations to users based on other users with similar tastes. We show that collaborative ltering systems, as they are deployed today, are vulnerable to a wide range of individual and group attacks whose consequences include bogus, highly biased predictions...
متن کاملA Robust Privacy-Preserving Recommendation Algorithm
Privacy-preserving collaborative filtering schemes are key recommender system technologies for e-commerce field. They focus on alleviating information overload problem by providing personalized recommendations without deeply jeopardizing customers’ privacy. Like their non-private versions, privacy-preserving recommendation methods might be easily subjected to profile injection attacks for manip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014